38

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Trotta, A., Falaschi, P., Cornara, L., Minganti, V., Fusconi, A., Drava, G., & Berta, G.,

(2006). Arbuscular mycorrhizae increase the arsenic translocation factor in the as

hyperaccumulating fern Pteris vittata L. Chemosphere, 65(1), 74–81. Pergamon. doi:

10.1016/j.chemosphere.2006.02.048.

UNEP, (2015). Sustainable Consumption and Production – Handbook for Policymakers.

Global Edition; Nairobi: United Nations Environment Program.

Van, D. H., Johan, S. G., Devin, R., Howard, F., Walter, T., David, A. W., Ron, G. M. De. G.,

et al., (2019). Soil nematode abundance and functional group composition at a global scale.

Nature, 572(7768), 194–198. Nature Publishing Group. doi: 10.1038/s41586-019-1418-6.

Van, D. J., Lloyd, T., Chhetry, S., Liou, R., & Peck, J., (2002). Remediation Technologies

Screening Matrix and Reference Guide-Version 4.0. US Army Environmental Center,

Report\# SFIM-AEC-ET-CR-97053, Aberdeen Proving Ground, MD.

Vidali, M., (2001). Bioremediation - an overview. Pure and Applied Chemistry, 73(7), 1163–

1172. De Gruyter.

Visioli, G., D’Egidio, S., Teofilo, V., Monica, M., & Anna, M. S., (2014). Culturable endophytic

bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens.

Chemosphere, 117(1), 538–544. Pergamon. doi: 10.1016/j.chemosphere.2014.09.014.

Wang, W., Zujun, D., Hongming, T., & Lixiang, C., (2013). Effects of Cd, Pb, Zn,

Cu-resistant endophytic Enterobacter sp. CBSB1 and RhodotorulaSp. CBSB79 on

the growth and phytoextraction of Brassica plants in multimetal contaminated soils.

International Journal of Phytoremediation, 15(5), 488–497. Taylor & Francis Group. doi:

10.1080/15226514.2012.716101.

Wang, Y., & Chuan-Chao, D., (2011). Endophytes: A potential resource for biosynthesis,

biotransformation, and biodegradation. Annals of Microbiology, 61(2), 207–215. BioMed

Central.

Weyens, N., Sarah, C., Joke, D., Lee, N., Daniel, V. D. L., Robert, C., & Jaco, V., (2010).

Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination.

Environmental Pollution, 158(7), 2422–2427. Elsevier. doi: 10.1016/j.envpol.2010.04.004.

Williams, J., (2006). Bioremediation of Contaminated Soils: A Comparison of In Situ and Ex

Situ Techniques. Recuperado de/Paper/Bioremediation-of-Contaminated-Soils-\% 3A-A­

Comparison-Williams/4c6afc722040e0d4807a744b7f89a5e7b9dac97f, 2001.

Wu, B., Ziru, W., Yuxing, Z., Yuanming, G., Ying, W., Jiang, Y., & Heng, X., (2019). The

performance of biochar-microbe multiple biochemical material on bioremediation and soil

micro-ecology in the cadmium aged soil. Science of the Total Environment, 686, 719–728.

Elsevier. doi: 10.1016/j.scitotenv.2019.06.041.

Wu, Y., & Ji, C., (2013). Investigating the effects of point source and nonpoint source pollution

on the water quality of the East River (Dongjiang) in South China. Ecological Indicators,

32, 294–304. Elsevier. doi: 10.1016/j.ecolind.2013.04.002.

Xiao, A. W., Li, Z., Li, W. C., & Ye, Z. H., (2020). The effect of plant growth-promoting

rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa

L.). Chemosphere, 242, 125136. Pergamon. doi: 10.1016/j.chemosphere.2019.125136.

Xiao, H., Bryan, G., Xiaoyun, C., Manqiang, L., Jiaguo, J., Feng, H., & Huixin, L., (2010).

Influence of bacterial-feeding nematodes on nitrification and the ammonia-oxidizing

bacteria (AOB) community composition. Applied Soil Ecology, 45(3), 131–137. Elsevier.

doi: 10.1016/j.apsoil.2010.03.011.

Yamamoto, T., Ikue, G., Osamu, K., Kazuaki, M., Eiji, A., & Osamu, M., (2008).

Phytoremediation of shallow organically enriched marine sediments using benthic